FOR LEARNING

Research in Learning Technology ASSOCIATION
Vol. 25, 2017 TECHNOLOGY

ORIGINAL RESEARCH ARTICLE
Some aspects of grading Java code submissions in MOOCs

Sandor Kiraly®*, Karoly Nehéz®, Olivér Hornyak®

“Department of Information Technology, Eszterhdazy Karoly University, Eger, Hungary,
b Department of Information Engineering, University of Miskolc, Miskolc, Hungary

(Received 7 November 2016, final version received 30 March 2017)

Recently, massive open online courses (MOOCs) have been offering a new online
approach in the field of distance learning and online education. A typical MOOC
course consists of video lectures, reading material and easily accessible tests for
students. For a computer programming course, it is important to provide interac-
tive, dynamic, online coding exercises and more complex programming assign-
ments for learners. It is expedient for the students to receive prompt feedback on
their coding submissions. Although MOOC automated programme evaluation
subsystem is capable of assessing source programme files that are in learning
management systems, in MOOC systems there is a grader that is responsible for
evaluating students’ assignments with the result that course staff would be required
to assess thousands of programmes submitted by the participants of the course
without the benefit of an automatic grader. This paper presents a new concept
for grading programming submissions of students and improved techniques
based on the Java unit testing framework that enables automatic grading of code
chunks. Some examples are also given such as the creation of unique exercises
by dynamically generating the parameters of the assignment in a MOOC program-
ming course combined with the kind of coding style recognition to teach coding
standards.

Keywords: education; massive open online courses; external grader; open edX;
computer programming

Introduction

A massive open online course (MOOC) is an online teaching programme that provides
unlimited participation for traditional course materials via the web. MOOCsSs were first
introduced in 2008 and emerged as a popular mode of learning in 2012. MOOCs
also provide videos, interactive forums to support knowledge sharing, teamwork
and community interactions among students, teachers and teaching assistants.
Learning to programme requires more than just watching video tutorials, reading
handouts or filling in tests. It requires students to gain practical skills (Robins,
Rountree, and Rountree 2003). Consequently, computer programming instruction in
an online environment must provide coding tasks and assessable practical program-
ming assignments with prompt feedback (Vihavainen, Luukkainen, and Kurhila 2012).
When developing an e-learning environment, it is particularly important to
apply good exercises from real life to increase both students’ satisfaction and engage-
ment (Joo, Joung, and Kim 2013). Good assignments help students to consolidate

*Corresponding author: Email: kiraly.sandor@uni-eszterhazy.hu

Research in Learning Technology 2017. @ 2017 S. Kiraly et al. Research in Learning Technology is the journal of the Association for Learning 1
Technology (ALT), a UK-based professional and scholarly society and membership organisation. ALT is registered charity number 1063519.
http://www.alt.ac.uk/. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix,
transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945

(page number not for citation purpose)

mailto:kiraly.sandor@uni-eszterhazy.hu
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

their knowledge. Assignments should start from the easiest things and move towards
the more difficult exercises. In order to keep up the motivation of the students, a learn-
ing unit should not exceed 15 min processing time, although students’ attention levels
vary widely based on factors like motivation, emotion, enjoyment and time of day
(Bunce, Flens, and Neiles 2010).

The authors believe that teaching computer programming is different from teach-
ing other subjects. Programming languages have syntax rules, which need to be mem-
orised in order to become an efficient programmer. A capability for algorithmisation is
another important factor. Software engineers need to break down a problem into a set
of instructions that can be executed by the computer. The nature of programming is
that in most cases there are several almost equal solutions: the same algorithm can
be implemented in a number of different ways.

Without an automatic evaluation system, teachers and/or teacher assistants would
have to execute the submissions and grade manually based on extensive check lists.
Moreover, it is essential to give a novice programmer instant feedback on the quality
of their (repeated) submission that cannot be performed without an automatic grader.
Besides, it may also occur that teachers or teacher assistants do not understand correct
student solutions (after looking at dozens of similar programmes) or they grade similar
programs differently. In the case of complex tasks, it is impossible to do check lists that
cover all possible cases. Also applications that actually work on the student’s machine
can fail on the teacher’s machine.

To eliminate these problems, MOOC systems apply automatic graders to assess the
thousands of programmes submitted by the students of the programming course.
Creating a fast and accurate feedback in the context of MOOC:s is a real challenge.

The purpose of the grading subsystem is to evaluate the code written by the stu-
dents no matter what version they come up with. Consequently, a grader is extremely
useful for software programming courses where learners are asked to submit complex
code blocks. An efficient and flexible grader is generally an external subsystem of a
MOOC framework. Basically, it should consist of fully functioning compilers that
can execute the code submitted by the students. Some factors to consider when design-
ing a grader for computer programming courses are:

e The grader should be able to compile the code. It is not sufficient if a grader
simply compares the code as text with a predefined answer.

e The grader should run the student’s code separately. The execution of the codes
of Alice and Bob must be totally independent.

e The execution of malicious code or badly written code should not affect the
MOOC system. So when Alice writes her first endless loop, the MOOC system
should continue responding. And when Bob instructs the computer to wipe out
the hard drive, that code must not be executed on the live system.

o Efficiency is an important factor. Thousands of people will submit their code at
the same time. The grader must put the requests in a queue and respond as
quickly as possible.

e The grader should support virtual environments. You may want to host your
MOOC system on a UNIX-like system but teach Windows programming.
The external grader preferably runs in a virtual environment.

e Security is paramount. Some students may be earning credits for their degree,
and they should not be able to hack their own grades.

Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology

e The answer from the grader should clearly indicate the acceptance of the code,
or in case of errors, it should provide hints to resolve the problem.

e The grader should always maintain anonymity; it must not be revealed to any
participant whether the code belongs to Alice or Bob.

The assessment of submitted programmes in MOOC systems

There are several sites that offer various online courses including computer program-
ming, for example, Coursera, Codeacademy, Udacity or edX.

Coursera is a venture-backed, for-profit, educational technology company
that offers MOOCs. They offer courses from several dozen universities and other
organisations in different subjects (Coursera 2016). Coursera also offers Computer
Science courses but the use of auto-graders is not typical in their programming
courses. To assess students’ skills they prefer to use multiple choice and true or false
questions.

Compared to other online education platforms, Codecademy focuses entirely
on giving coding lessons to students. Courses include web fundamentals, PHP,
JavaScript, jQuery, Python, Ruby and APIs. Students can also combine these lan-
guages for their projects. The courses of the site are offered for novice programmers
and codes can be written in the code panel and evaluated either line by line, or the
output of the programme is tested applying a black-box test.

Udacity is a for-profit educational organisation offering MOOCs. Their main
focus is on vocational courses for professionals such as Front-End Developer or
i0S Developer. Each course consists of several units comprising video lectures
with closed captioning in conjunction with integrated quizzes to help students under-
stand concepts. Programming classes use the Python language; for programming
assignments, the submitted codes run in a full environment using a sandboxed
grading system on Amazon Web Service (AWS). All the students’ codes run in
this environment, which allow them to offer a much wider array of programming
languages/environments from within the browser than would otherwise be possible.
Courses do not offer dynamically changing exercises and the programming courses
do not test programmes that use the GUI framework (Courses and Nanodegree
Programs 2016).

In May 2012, recognised universities such as Harvard University and
Massachusetts Institute of Technology (MIT) began to offer free online courses, assess-
ments and certificates of completion for a fee. Their initiative was called edX and was
based on an open-source software technology platform. In the open edX platform,
a tool called Studio is used to create the structure of the courses and to add course
content, including exercises (called ‘problems’), videos and other resources for learners.
Another important component of this platform is the open edX Learning Management
System (LMS). This provides facilities for participants to access course content, includ-
ing videos, textbooks and problems, and to check their progress in the course. To assess
students’ codes, an external grader can be built and deployed separately from the edX
platform.

Using a third-party grader tool is a feasible option (Guillaume 2015); see, for
example, the INGlInious tool, which provides smooth integration with open edX
and offers a safe environment for running the submitted programmes (Usage of
INGlnious 2016).

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945 3

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

The external grader in edX

The MeMOOC project MeMOOC stands for Miskolci Egyetem (University of
Miskolc, in English) and MOCCs (MeMooc System 2015). It is a social learning portal
based in open edX that has been developed at the University of Miskolc, Hungary.
MeMOOC has 12 flagship modules which provide course material on information
and communication technologies (ICT), servers, computers and programming and
multimedia development (MeMooc System 2015). They are as follows:

Web application development

Database systems and applications
Systematic approach to IT systems
Information and communication technologies
Multimedia content creation

Mobile devices programming

Introduction to programming languages
Computer networks and security

Building computer networks

Server administration

There are 54 courses altogether related to subjects for the full-time IT students
at the university. Each course is available in Hungarian and in English as well. For
programming courses, an advanced grader tool has been developed that analyses
the code written by the students and evaluates the code. In this way, students
get instant feedback on the code they have written without the constant presence of
a teacher (Kusper et al. 2016).

The grader evaluates programme code; it is that simple. The improvement made
for MeMOOC was that the code is accompanied by predefined test cases and the result
seen by the students is the output from the unit tests. In this concept, course developers
write unit tests for the programming exercises. If all the test cases are passed, then the
submitted code is correct. If a unit test fails, then the code is not correct. It can provide
hints to the students on how to fix the typical errors.

MeMOOC, based on edX, includes external graders that receive the learner
responses to a problem, process those responses and return feedback. Graders run
as a service and can be built and deployed separately from the edX platform. The
edX platform communicates with the external grader through an interface called
XQueue. It transmits learners’ input to the grader; then it asynchronously waits for
results from the grader and returns them to the LMS. Submissions are collected by
a message queue, where they are stored until the grader actively retrieves, or pulls,
the next submission from the queue for grading. The external grader polls XQueue
through a RESTful interface at a regular interval. When the external grader retrieves
a submission, it runs the tests on it, then pushes the response back to XQueue through
the RESTful interface. XQueue then delivers the response to the edX LMS. This is
how an active grader works, by asynchronously pulling messages from a queue and
pushing answers back.

A passive grader, on the contrary, waits for XQueue to send the task to be checked
and works synchronously. The LMS sends messages that are handled by a queue.
XQueue checks the settings and determines which URL can be associated with
which task. The message will be delivered to the proper URL. The passive grader

Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology

gets a POST request from XQueue and a response in sync. The answer for the LMS
will be delivered by XQueue through the proper URL. Figure 1 represents a simplified
model of the external grader in edX.

the grade for the grade for
The learner’s the submission the submission
The External Grader

rogram code in
Prog LMS program code XQueue runs the test on the
N program code learner’s code

Figure 1. Model of the external grader process in edX.

The uploaded programme code is stored in a database. By default, open edX allows
large files to be uploaded to an Amazon S3 bucket and saves the URL of these into the
local database. This approach is very useful if there are thousands of file submissions.
The downside is that Amazon S3 is a commercial service, thus adding some mainte-
nance cost, and causing external dependency on the service. In MeMOOC, a local
MySQL database was established to store all submitted files.

The external grader of MeMOOC includes a messages queue (RabbitMQ) that
works as follows: (1) It receives the message from XQueue. (2) RabbitMQ reads
data from the database and (3) serialises it. Then (4) MeMOOC sends an HTTP
message to the external grader and (5) waits for the response. In the meantime, the
external grader (6) initialises a virtual environment to (7) interpret/compile and
execute the unit test that verifies the submitted code. (8) The output of the tests is
saved to a file having a random filename.

Java graders in MeMOOC

What are the key factors of a successful automated grader system? According to
Hundley and Britt (2009), one of the most important parts of a successful program-
ming course is a good assignment. Ala-Mutka (2005) declared that the use of auto-
matic tools requires more methodological attention in the settings of assignment
and assessment. Hollingsworth (1960) stated that assignments need to be properly for-
mulated in order for automatic assessment to be effective. Douce et al. (2005) warns
that the specification of programming tasks for an automated grader always requires
more precision than for the equivalent manually graded assignment, and it should not
be allowed to contain ambiguities especially when considering input/output formats.

Determining whether a programme works properly is not an easy task; the theore-
tical limits are discussed in Beckman (1980). While there are some mathematical the-
ories for checking the correctness of an algorithm, these are complicated and not easy
to implement; moreover, the computer programming courses of MeMOOC suggest
students should test their programmes using test files and unit tests. Ala-Mutka
(2005) remarked that the test case design highly influences the coverage of the assess-
ment. To avoid the false identification of programmes, Montoya-Dato et al. (2009)
suggest that the set of test cases needs to be ‘well thought out’. It is also particularly
important to select test cases covering all paths throughout the programme. The test
data are the Achilles’ heels of any system that applies automatic graded system as
Pieterse (2013) states.

Applying test cases is not sufficient for checking the code and the programming
styles. For novice programmers, learning the correct coding style is a basic requisition.
The applied assessments in programming courses for beginners must guarantee that
students learn coding conventions: proper variable names, the insertion of comments

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945 5

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

in the code, etc. Thus, an automatic grader must be available for analysing the
submitted code, line by line.

Portals that wish to offer programming courses in which GUI classes of the
programming language need to be applied must provide an automatic grader that
can assess these programmes. In this case, applying a simple unit test or a grader
that can analyse the code line by line is not enough.

When programmes are automatically assessed, students may tend to submit some-
one else’s work. To prevent plagiarism for courses that offer credits is also an objective
of an assessment system.

That is the reason, that in MeMOOC, different grading methods are in use for
learning Java programming. The most frequently used one is based on the external
grader. When grading a Java code submission, the first step is the compilation of
the student’s source code and the second one is the execution of the compiled code
by means of unit test. In case of any compilation error, the process stops and the
error message of the compiler will be sent between <pre> html tags to the LMS,
which displays the message as it is. (For graders developed for other languages, this
may be different but the logic is the same.)

When the grader runs the code, both the memory consumption and the execution
time are limited by a virtual environment. By default, Java virtual machines (JVM)
assign 32MB memory for a virtual machine; if a programme exceeds the memory
limit, then an exception is thrown and execution stops. Besides the memory limit,

External Grading System

Code Execution System JAVA VM

(CodeJail)

| Executables

‘ Safe

C++ compiler

T
| I UNIT Testing Framework |

HTTP POST

Queue System

Learning Management System
(LMS) QUEUE API
(XQUEUE)

XML document

Message Queue
(RabbitMQ)

Grader tasks
Problem Set Editor

Database
(MySQL)

File storage
(local or S3 storage)

il

Figure 2. Evaluating coding assignments by means of an external grader.

6 Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology

it is expedient to limit CPU time. A configuration setting allows the maximum
processing time to be defined so that endless loops or inefficient algorithms would
result in an out-of-time exception.

XQueue is triggered by a timer to check whether there is an unprocessed item in the
queue. If it finds one, then it processes the item and sends back the result to the LMS.
The response should be delivered in a maximum of 4-5 s in order for students not to
become impatient. If a student navigates away from the page, the answer will be regis-
tered in the background, so as not to disappear. Figure 2 presents how the external
grader works in edX.

In the traditional education system, there are various other communications
between the instructor and the student; therefore, feedback is paramount in MOOC:s.

The implementation of the unit test-based grader

MeMOOC executes a unit test in the submitted Java code. This requires JDK7 and
JUnit4 to be installed on the server. Simple methods and full programmes can be
graded in programming courses. Using the assertEquals method of JUnit, the response
of the student code is compared with the expected result. After running test cases and
recording results for a submission, the grader returns information by posting a JSON
response.

The JSON string contains a value that indicates whether the submission was
correct, the score and the message to display, for example:

{

"correct":true,

"score":1,

"msg":"<p>The code passed all tests.</p>"

}

<?xml version="1.0" encoding="UTF-8"?>
<problem>
<script type="loncapa/python">
>>> the place of the dynamic python code
</script>
>>> The text of the task in HTML
<coderesponse queuename="advanced-grading-queue">
>>> quename attribute denotes the name of the message
>>> the answer can be determined either in an editor or by an uploaded
file)
<textbox mode="java" tabsize="2" />
<codeparam>
<answer_display>
>>> in case of required help this text will be displayed
</answer_display>
<initial_display>
>>> here is the code for the student
</initial_display>
<grader_payload>
>>> JUNIT source code that performs the tests
</grader_payload>
</codeparam>
</coderesponse>
</problem>

Figure 3. The XML skeleton of a coding task.

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945 7

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

If the programme code is not correct, it is also possible to inform the student which
test case the submitted code failed on and why the programme code is not correct.

The assignment is represented by an XML file internally. This format allows the
system to be extended for external graders. Figure 3 represents the skeleton of the
XML file in which a problem can be coded.

The unit test must be placed in the <grader_payload> section of the XML file that
also contains the text of the task as well. Figure 4 shows a screenshot of a task and a
text box in which the student can code or copy the programme code.

Write a program that writes two numbers in one line from 30 and 9 in the standard output. Numbers in both columns
are decreased by 2. Write out 10 pairs.

Example:
309
287

14-7
129

Code ¢# EDIT ® @ @

&
i

CODE (1 point possible)

1L public class Main {

2 public static void main(String[] args) {
3}

4}

Figure 4. The coding assignment in MeMOOC.

Examining the structure of the skeleton code, it is easy to recognise that there is a
section that contains the text of the problem. If the xml file is preprocessed by means of
a Python script, then the coding problem becomes dynamic. In the example presented
above, the constant numbers of the task are actually random numbers that are gener-
ated when initialising the coding assignments. In the XML file, Python variables are
used, see <script> section, and these variables are embedded in the XML file. This
method ensures dynamically changing tasks to eliminate plagiarism. Figure 5 shows
the dynamic text of the task.

The code segment can be placed in the section of <initial_display> <linitial_
display>

The unit test must be implemented in the section of <grader_payload> </grader_
payload>

Figure A.1 in the Appendix for codes represents a unit test.

Please note that the unit test contains code bits that are not compliant with Java
syntax. Unit test case codes can contain special Python variables like $numl,
$num?2 and $num3 providing dynamic behaviour. The system evaluates the Python
variables when generating the assignment. Using this technique, students will
get assignments with random parameters. If authors set up a library of coding
exercises, then Python code can pick and render a random coding assignment.

Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945
(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology

<?xml version="1.8" encoding="UTF-8"?>
<problem>
<script type="loncapa/python">
<! [CDATA[

numl = random.randint(30, 200)

num2 = random.randint(30, 200)

num3 = random.randint(1, 4)
</script>

<p>Write a program that prints a pair of numbers separated by a space between $num! and $num?2 to the standard output. In the
following line decrease both numbers by $num3. Write out 10 pairs.</p>

<p>Example:
$num1 $num2
$num1-$num3 $num2-$num3
...
$num1-$num3*8 $num?2-
$num3*8
$num1-$num3*9 $num2-$num3*9</p>

Figure 5. The dynamic text of a task.

Furthermore, Python evaluates expressions like ($num1-$num3*8). As a result, the
coding assignments will have great flexibility. So MeMOOC can generate:

o the same coding assignment for all the users
e coding assignments with random assignment parameters
o random coding assignment

After the Python preprocessor runs it, the resulting code will be standard Java code
that has constant values. When running the grader, the Java compiler will cope with
the unit test code, thus evaluating the student’s submission.

The dynamic assessment of learners’ code

As can be seen in the example above, MeMOOC can generate assignments for the
students. This section covers the methods that are used to assess student code.
There are at least four different aspects to consider:

(1) the syntactical aspect

(2) the coding conventions aspect
(3) the structural aspect

(4) the business logic aspect.

The syntactical aspect

The syntactical aspect means that the code provided by the student will be compiled/
interpreted by a compiler/interpreter. The syntactical rules of the coding language
being used must be followed.

The coding conventions aspect

The coding conventions aspect covers the process to check whether students have fol-
lowed the coding guidance they are given. See, for example, the following assessment
(Figure 6):

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945 9
(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

Create an instance of Scanner class called kb. Declare a byte variable called sz in the
second line. In the third line, get some value from the keyboard and put to that variable.

<script type="loncapa/python">
def vglcfn(e, ans):

return ans.replace(" ","") ==
"Scannerkb=newScanner(System.in);bytesz;sz=kb.nextByte();"

</script>

<customresponse cfn="vglcfn">
<jsinput
gradefn="getGrade"
width="900"
height="200"
html_file="/static/textarea.html”
/>

</customresponse>

</problem>

Figure 6. The simple coding style aspect of the grader.
The xml of the assignment is given above. The grader code

return ans.replace(" ","") ==
"Scannerkb=newScanner(System.in),;bytesz,;sz=kb.nextByte();"

works as follows: it removes the spaces from the answer code and checks if the answer
is exactly the same as expected. This approach requires a very detailed assignment
description. The graders implementing this type of assessment are typically used in
the first weeks of the coding courses.

As mentioned above, this method is not preferred, so an advanced method was
used to check coding style. Checkstyle is a highly configurable tool to help professional
programmers write Java code that adheres to a predefined (Sun or Google) coding
standard (Checkstyle — code style analysis tool for Java 2016). It defines a set of
modules, which can examine common styling mistakes, for example, wrong naming
conventions of classes, methods and attributes; presence of mandatory headers; and
improper use of imports, scope modifiers, instruction blocks, long line lengths, com-
plexity measurements. In Figure A.2 in the Appendix for codes, curly bracket format-
ting problems are demonstrated as an example. Google Java Style Guide (2016)
defines the proper usage of braces, and the following code violates it. Running coding
style check from a shell, Checkstyle detects these problems; see Figure A.3 in the
Appendix for codes.

The structural aspect

The structural aspect comes in when the students can create complex data/programme
structures and these need to be checked. For example:

Declare a class called Person. Declare a string member variable called name.
Implement a method called getName() that gets the name of the person. Have an
integer member called age.

10 Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology
To check a code that implements the example above, we have to check whether:

o the class called Person was declared
o the member variable called age was declared
o the method called getName() exists

The grader of this code uses the well-known JUnit code. It tries to load the Person
class dynamically. If it does not exist, it throws a ClassNotFoundException exception,
which will be passed back to the student. The existence of the getName() method is
also checked, and if it is missing, then the grader throws an assertion failure, in
other words its unit test fails. If the method requires some arguments to be passed
then the person.getMethod call has to contain the list of parameters.

Figure 7 shows an example how to check member variable ‘age’. The code gets the
fields of ‘Person’ class, and the corresponding unit test fails if ‘age’ is not found.

public class TestPerson {

@Test
public void test() throws ClassNotFoundException {
Class person = ClasslLoader.getSystemClassLoader().loadClass("Person");

try {

person.getMethod("getName");

}catch (NoSuchMethodException e) {
assertFalse("getName() not found", true);

}

Field[] fields = person.getDeclaredFields();

try |
person.getField("age");
}catch (NoSuchFieldException e) {
assertFalse("age field not defined", true);
}

}

Figure 7. Grader: the structural aspect.

The business logic aspect

Standard JUnit tests were used to check business logic. See the following example:

@Test

public void testRetirementAge() {

Person p = new Person();

p.setAge(60);

assertEquals(p.getAgesUntilRetirement(), 5);
p.setAge(70);
assertEquals(p.getAgesUntilRetirement(), -1);
}

Figure 8. Example of simple business logic grader.

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945 1 1

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

Implement a function that calculates how many years are left to work until a
person can retire (normal retirement age is 65). To test the code that implements
this logic, the following unit test can be used (Figure 8).

To avoid failure owing to not producing the correct output in the expected format
by the submitted programme, we tried to simplify the output format (programmes
display only numbers instead of long texts combined numbers).

Testing programmes with GUI in MeMOOC

Although command-line interface (CLI) applications may be sufficient for improv-
ing programming skills, graphical user interfaces (GUI) in applications would
increase student motivation and experience (Staubitz et al. 2015). Usually, students
are interested in learning how to develop programmes having GUIs (English
2004). Likewise, applications that perform 3D rendering or animations attract
learners.

Programmes that use Java GUI frameworks cannot be tested efficiently by integra-
tion tests. Consequently, there is another way of testing and grading students’ code.
Developing a software test environment for programmes involving GUI items is
ranked beyond the typical abilities of students and educators (Thornton ez al. 2008).
According to Thornton, one response to this problem is educational GUI libraries,
such as those presented in English (2004) and Thornton et al. (2008).

In the external grader system developed for MeMOOC, testing Java programmes
with GUI items uses the Mockito framework (Mockito mock testing framework
2016). For example, let’s assume the coding assignment is to add three checkboxes
and implement their event handlers. In Mockito, the test is implemented as checking
if three checkbox objects are instantiated and the addItemListener method is
called three times. To create an external GUI, grader for the Java, Mockito and
Powermock-module-JUnit are installed on the server side. In the test programme,
the existence of the class is checked in the following way: our grader tries to
refer to an object that must be created by the student’s programme and if it
does not exist in a catch block, the grader catches the error. Based on the
exception caught, the external grader can inform the student what is missing in the
submitted programme. The response may contain tips on how to resolve the error
caught.

Evaluating the effectiveness of the proposed solution

At the time of the starting requirement analysis for MeMOOC, there was no appro-
priate support for dealing with coding submissions. The initial question was the feasi-
bility of extending the edX framework with this feature. Since edX is a general MOOC
framework, there was less support for special features of learning to code online. The
biggest achievement of this project was to design and implement the extension of the
edX’s basic grading system with code submissions. We have successfully established
flexible templates and best practices, and created coding exercises, which are capable
of checking syntactical, semantical and pragmatic aspects of submissions. The finer
the feedback we want to provide, the more preparation the time required for creating
coding exercises. In case of our Java programming courses, about 60% of course devel-
opment time was spent on preparing coding exercises.

12 Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology

Using this approach to coding submissions, we found it possible to generate
dynamic problems in MeMOOC, not only for the coding submissions but also for
all problem types.

In dynamic problems, the text of the exercises and solutions can be dynamically
generated. In this way, creating graded tests require less effort from tutors, because
rather than needing to create a high number of tests, they can create a single master
test that appears to be a random exercise to students. At the time of writing this article,
more than 17 000 Hungarian students signed for 1 of our 150 MeMOOC courses.
The courses containing dynamic coding problems have 600% more subscriptions
than the average.

How does MeMOOC affect traditional higher education?

The authors are working as lecturers for Hungarian Universities and we have com-
pared and contrasted traditional and MeMOOC-based code submissions. In general,
creating a new code submission (with its possible solutions), requires about 60 min.
In a 20-person group, we need to spend 50 min with each student to submit a coding
exercise. It takes 6 h of work in total. With MeMOOC, it takes 6 h to create the new
code submission (with a number of code checks).

So, having more than 20 students, the invested effort would be worth it. Therefore,
MeMOOC contains not only open courses for the public but also a high number of
courses that extend the number of traditional higher education subjects.

Discussing the pros and cons of this approach and wider application potentials

The difficulty with our approach is the long preparation time necessary to create the
coding exercises. But once the submissions are created, they can serve any number
of students. Our automated grader provides qualitative feedback; for example, if the
student’s programme output does not produce the expected result or if a common
error was made, it can provide a textual hint sufficient to tell the student what is
wrong with the solution.

The advantage of our grading system as explained is that it can be applied for pro-
gramming languages other than Java. The disadvantage is that, each new program-
ming language requires that its own compiler be installed and configured properly.

Conclusions

In this paper, the concept of evaluating programming submissions of MOCCs was
presented. The method was implemented for the Java programming language but
can be extended to any programming language that supports unit testing. Four layers
of code assessment were identified, demonstrating how to check the programming
style, the code structure, the business logic and GUI codes. Some examples for each
aspect were presented. In addition, the dynamic generation of coding assessments
was implemented, with Python scripts being used for this purpose. These methods were
implemented in Java programming courses that can be accessed at www.memooc.hu

Acknowledgement

This research was partially supported by the European Union and the Hungarian State,
co-financed by the European Regional Development Fund in the framework of the

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945 13

(page number not for citation purpose)

www.memooc.hu
http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

GINOP-2.3.4-15-2016-00004 project, aimed to promote the cooperation between the higher
education and the industry.

References

Ala-Mutka, K. (2005) ‘A survey of automated assessment approaches for programming assign-
ments’, Computer Science Education, vol. 15, no. 2, pp. 83-102.

Beckman F. S. (1980) Mathematical foundations of programming, Addison-Wesley, Boston,
Ist edition (June 1980). ISBN-10: 020114462X.

Bunce, D. M., Flens, E. A. & Neiles, K. Y. (2010) ‘How long can students pay attention in class?
A study of student attention decline using clickers’, Journal of Chemical Education, vol. 87,
no. 12, pp. 1438-1443. doi: 10.1021/ed100409p

Checkstyle — code style analysis tool for Java, 2016, [online] Available at: http://checkstyle.
sourceforge.net

Coursera, 2016, [online] Available at: https://www.coursera.org/

Courses and Nanodegree Programs, 2016, [online] Available at: https://www.udacity.com/
courses/all

Douce, C., Livingstone, D. & Orwell, J. (2005) ‘Automatic test-based assessment of program-
ming: A review’, Journal on Educational Resources in Computing, vol. 5, no. 3, p. 4.

English, J. (2004) ‘Automated assessment of GUI programs using JEWL’, ACM SIGCSE
Bulletin, vol. 36, no. 3, pp. 137-141.

Google Java style guide, 2016, [online] Available at: https://google.github.io/styleguide/
javaguide.html

Guillaume, D., et al., (2015) ‘Automatic grading of programming exercises in a MOOC using
the INGlInious platform’, Proceedings Papers, p. 86, [online] Available at: https://www.info.
ucl.ac.be/~pvr/DervalEMOOCS2015.pdf

Hollingsworth, J. (1960) ‘Automatic graders for programming classes’, Communications of
ACM, vol. 3, no. 10, pp. 528-529.

Hundley, J. & Britt, W. (2009) ‘Engaging students in software development course projects’, The
Fifth Richard Tapia Celebration of Diversity in Computing Conference: Intellect, Initiatives,
Insight, and Innovations (TAPIA '09), ACM, New York, pp. 87-92.

Joo, Y. J., Joung, S. & Kim, E. K. (2013) ‘Structural relationships among e-learners’ sense of
presence, usage, flow, satisfaction, and persistence’, Educational Technology & Society,
vol. 16, no. 2, pp. 310-324.

Kusper, G., et al., (2016) ‘Introducing MeMOOC and recent results in e-learning at University
of Miskolc’, Proceedings of ‘WOW! Europe Embraces MOOCs’, Rome, pp. 75-78.

MeMOOC system, 2015, [online] Available at: http://memooc.hu

Mockito mock testing framework, 2016, [online] Available at: http://mockito.org/

Montoya-Dato, F. J., Fernandez-Aleman, J. L. & Garcia-Mateos, G. (2009) ‘An experience
on Ada programming using online judging’, Reliable Software Technologies — Ada-
Europe 2009, 14th Ada-Europe International Conference, Brest, France, June 8—12, 2009,
Proceedings (Ada-Europe), Springer, London, UK, pp. 75-89.

Pieterse, V. (2013) ‘Automated assessment of programming assignments’, Proceedings of the 3rd
Computer Science Education Research Conference on Computer Science Education Research,
ACM Digital Library, New York, pp. 45-56.

Robins, A., Rountree, J. & Rountree, N. (2003) ‘Learning and teaching programming: A review
and discussion’, Computer Science Education, vol. 13, no. 2, pp. 137-172.

Staubitz, T., et al., (2015) ‘Towards practical programming exercises and automated assessment
in Massive Open Online Courses’, 2015 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE), IEEE, New York, pp. 23-30.

Thornton, M., et al., (2008) ‘Supporting student-written tests of GUI programs’, ACM SIGCSE
Bulletin, vol. 40, no. 1, pp. 537-541.

Usage of INGInious, 2016, [online] Available at: http://inginious.org/#usage

Vihavainen, A., Luukkainen, M. & Kurhila, J. (2012) ‘Multi-faceted support for MOOC in
programming’, Proceedings of the 13th Annual Conference on Information Technology
Education, ACM, New York, pp. 171-176.

14 Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945
(page number not for citation purpose)

10.1021/ed100409p
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net
https://www.coursera.org/
https://www.udacity.com/courses/all
https://www.udacity.com/courses/all
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://www.info.ucl.ac.be/~pvr/DervalEMOOCS2015.pdf
https://www.info.ucl.ac.be/~pvr/DervalEMOOCS2015.pdf
http://memooc.hu
http://mockito.org/
http://inginious.org/#usage
http://dx.doi.org/10.25304/rlt.v25.1945

Research in Learning Technology

Appendix for codes

public class GraderUnitTestSample {

ByteArrayInputStream in;
ByteArrayOutputStream out;
PrintStream originalOut;
InputStream originalln;

String myCase = "10";
String mySol = "";

@Before

public void setUpStreams() {
originalIn = System.in;

out = new ByteArrayOutputStream();
originalOut = System.out;

System.setOut(new PrintStream(out));
System.setErr(new PrintStream(out));

@Test(timeout=1000)
public void testl() {
Main.main(null);
for (int i=0;i<10;i++)
mySol+=($numl-$num3*i).toString()+($num2-$num3*i).toString();
assertEquals(mySol,
out.toString().replaceAll("\r", "").replaceAll("\n", ""));

@After

public void nullStreams() {
System.setIn(originalln);
System.setOut(originalOut);
System.setErr(originalOut);

public static void main(String[] args) {
Result result = JUnitCore.runClasses(Grader2.class);
for (Failure failure : result.getFailures()) {
String myFailure = failure.toString();
myFailure = myFailure.replace("<", " ");
myFailure = myFailure.replace(">", " ");
System.out.println(myFailure);

System.out.println(result.wasSuccessful());

Figure A.1. Grader unit test example.

public class Person
{ // Violates 4.1.2 point of [25]: No line break before the opening brace.
private Date birthDay;
public Date getBirthDay()
{ // the same formatting problem
return birthDay;

public void setBirthDay(Date birthDay) {
this.birthDay = birthDay;
}
}

Figure A.2. Advanced coding style aspect of the grader.

Citation: Research in Learning Technology 2017, 25: 1945 - http://dx.doi.org/10.25304/r1t.v25.1945

15

(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

S. Kiraly et al.

Starting audit...

[WARN] Person.java:2:1: '{' at column 1 should be on the previous line. [LeftCurly]
[WARN] Person.java:5:3: '{' at column 3 should be on the previous line. [LeftCurly]
Audit done.Audit done.

Figure A.3. Checkstyle output.

16 Citation: Research in Learning Technology 2017, 25: 1945 - http:/dx.doi.org/10.25304/rlt.v25.1945
(page number not for citation purpose)

http://dx.doi.org/10.25304/rlt.v25.1945

