
Dissertations and databases:

the historian as software engineer

Gervase Phillips

Manchester Metropolitan University

This article argues that historians have always been closer to programmers than has perhaps been
recognized, and that historical software projects undertaken within the framework of the traditional
third-year dissertation are useful training not just for the potential historian, but also for the potential
software engineer.

The historian of tomorrow will be a programmer or he will be nothing.
(Emmanuel Le Roy, Le Territoire de l'historien (Paris, 1973))

The final weeks of the summer term see the normal frantic rush of second-year students
looking for a suitable topic for a dissertation. Traditionally, the aim is to produce a piece
of work from ten to fifteen thousand words, comprising a significant amount of original
research, drawn from primary material, and demonstrating the ability to formulate and
sustain a cogent argument, evaluate evidence and communicate original ideas. All this
should be within the conventional, scholarly framework, logically structured and
scrupulously referenced.

With increased student numbers and strained traditional resources, one possible solution
to the problem of finding a topic is a software project. This choice utilizes IT skills in a
manner which the student can immediately appreciate, and integrates IT into the
mainstream of the history student's experience. There is no real reason why a software
project cannot be considered by the same criteria as a normal dissertation, and open to
similar judgements: essentially historical judgements. But the tight methodological rules
which have governed the writing of academic history can be of more than passing
relevance to the software engineering industry itself. As the use of IT becomes more
widespread in the teaching of history, and, as Le Roy predicted, more historians become
programmers, it is important to avoid some of the pitfalls into which the burgeoning
software industry fell. Interestingly, those rigorous methodological rules insisted upon in
the production of history dissertations are not only good practice for potential historians,
but also for potential software engineers.

48



ALT-] Volume 3 Number 2

The production of software was, and to some extent still is, bedevilled by the
idiosyncrasies of individual programmers. Since there was very rarely a single right way of
writing a program, a single correct algorithm to solve a given problem, much code has
been produced with features reflecting only the individual proclivities of the programmer.
There is a parallel here with the 'production' of history. Starting with the same problem
and the same primary sources, different historians have produced widely differing
interpretations of the same events. Thus American historians, influenced by political
beliefs, sectional loyalty, or the social mores of the times in which they wrote, have given
a plethora of differing accounts of the outbreak of the American Civil War. The
difference, vis-a-vis the production of software, however, is that there is an established
methodological framework within which history is written. The conventions of historical
writing, such as footnoting and referencing, facilitate comprehension. The origins of
arguments, interpretations, and particular lines of thought can be traced back to their
sources. New interpretations, revisions, and previously unknown original sources can all
be incorporated into the existing corpus of historical knowledge within the conventional
methodological framework.

Software engineers, on the other hand, had no such framework or conventions. If a
program needed to be revised, up-dated or debugged, the programmer was faced with a
mass of code, possibly in a low-level language, where it could be very difficult to identify
what any particular line was doing at any stage, making the amendment of the code
immensely problematic. Given a lapse of time, even the original authors of code could be
unable to unravel their own work', and even greater problems ensued when different
programmers had to struggle with other peoples' unannotated and undocumented code.
Knowledge of a historian's sources makes it easier to 'debug' his or her work. What is
required is precisely the kind of conscientious referencing that is (or should be) second
nature to the historian. Code should be elucidated by textual comment in the manner of
good history. Object orientation will make this more plausible and more obvious: objects
have a history as well as formal parentage.

All this has interesting implications in teaching at undergraduate level. History students
are likely to have a better grounding in documenting their work than their more
technically gifted peers in the sciences. It is important that this aspect is not neglected in
teaching the use of IT, and if the use of computers is taught as an intrinsic part of the
historian's method of production, there is no reason why it should be. If IT is taught as a
bolt-on unit, with little reference to the subject a student is reading, it may not be
recognized that some of the skills the student is taught as a historian remain relevant,
even essential, when using computers. It may prove, ironically, that students who produce
substantial and well-referenced text for history assessments come to regard the use of
computers as so distinct from their normal work, that they, like many software engineers,
fail to produce adequate documentation in that part of their studies. However, if the need
to produce sound documentation is stressed, then the training that a degree in history
gives students should potentially make them promising software engineers.

Consider, for example, a database project. Databases are one of the most exciting and
useful IT applications for the historian, a mainstay of undergraduate history and
computing courses. The nature of historical sources makes the creation of historical
databases a challenging exercise for historian and programmer alike. All the standard

49



Gervase Phillips Dissertations and databases: the historian as software engineer <

historical problems arise and the standard historical criteria apply: the material included
in a database must be subject to the same care and attention as any primary source
material. An obvious example is that the historian must ensure that any statistical
evidence he or she is working with is reliable, comparable, representative and fruitfully
categorized. The programmer/historian must address the motives of those who compiled
the figures and constructed the categories and must be aware that the definitions of
categorizations and classifications are themselves matters of history. Furthermore, the
programmer/historian must think carefully about the design of the database. Historical
databases, resources for analysis rather than functionally analytical, may seem both
objective and empirical, yet the data stored in them is selective. The design of the
database, the names and data definition of fields, and the structure of tables in a
relational database, are essentially historical choices, judgements open to the criticism of
other historians. Attempts were made to quantify the morale of the British Army in 1917
by counting the occurrence of words indicative of good or bad morale in their letters
home during censoring (Cab. 24/26 G.T.2052 and Cab. 24/36 G.T.3044). Were the views
expressed in letters that men knew would be censored, to relatives they did not want to
distress, really likely to be representative of their thoughts? To follow this judgement in
database fields of 'good' and 'bad' would be to fail in historical analysis, just as would be
the suppression of the use of this contrast.

The programmer/historian must justify a design (argue a case), select and interpret data
(evaluate evidence), and present the data clearly in a format in which others may use it
(communicate original ideas). In practice, this means that the construction of a working
database imposes further problems on the trainee historian, providing at least as great an
intellectual challenge as a more conventional piece of research. All this must be done
within a rigorous framework including annotated code, referenced sources and textual
and technical explanations of design strategy. This is an exercise which addresses
fundamental methodological questions concerning the academic discipline of history. The
application of computers to the study of history that has accompanied the shift in
emphasis from the Great Men of the past to the masses, is well illustrated in a project
based around census returns. However, further issues are raised, particularly by the use of
statistics. Some American historians, the 'cliometricians' (most notably Robert W. Fogel
and Stanley L. Engerman), have argued that there are areas of human behaviour best
understood as a system in which both variables and their relationships can be quantified
(Fogel and Engerman, 1974; Tosh, 1984, pp. 198-202). What could be a better basis for a
discussion of their ideas than students using computers to formulate their own historical
models and theories? And in the realms of more conventional history, a database project
gives awareness of methodological debates. The selection and interpretation of historical
data raises questions about metahistory itself; if the building up of a source of empirical
evidence is demonstrably subjective, what of the wider implications for the concept of
historical objectivity and the existence of the historical fact? The value of this kind of
exercise in history is readily apparent. The added boon is that such a project equips the
students with transferable skills of a valuable nature, both in programming and in writing
documentation. For such purposes, the documentation produced should be of com-
parable length to a standard dissertation.

As an example of what I have in mind, the following notes are a brief suggested outline

50



AtrJ Volume 3 Number 2

for a third-year dissertation project. Databases are probably the most suitable exercise,
but there are alternatives. More experienced programmers might like to attempt
simulation programs to test some of the great What-ifs? of history, or interactive
educational programs that quiz users (perhaps secondary-school pupils) on their
historical knowledge and mark them appropriately. The possibilities are very wide.

An example outline for a third-year software project based around
the design and implementation of a historical database

Programming
Implemented Paradox 4 database with data normalized to third Normal Form.

Documentation
See Sommerville (1989).

Requirements specifications
Functional system requirements
These are the system services which are expected by the user of the system. Since the user
(in this case a historian) is uninterested in the technical detail, technical implementation
concepts should be avoided in this document. In short, this document should be a
straight, plain-English statement of what the system is required to do.

Non-functional requirements
These set out the constraints under which the system must operate, for example all input
being expressible using the ASCII character set. These documents should be complete and
consistent: that is, they should contain all the requirements, and no contradictions.

Formal specification
This is a technical analysis of requirements, expressing which Paradox functions will be
utilized to meet the above specifications. This document may be finalized after a process
of prototyping and requirements validation (see below).

System design
This is a detailed explanation of the design of the database, the tables implemented,
relationships and key fields. The design strategy adopted for a database may be
prototyping, where the designer experiments with different implementations to find the
most suitable technical approach, and the approach which best fulfils the specified
requirements. Put simply, this allows the programmer to implement a database, discuss
any shortcomings with potential users, then adapt or re-design the database until it is
satisfactory. This is, perhaps, the most appropriate methodology for fledgeling
programmers. After all, historical databases are not safety-critical. If at first students do
not succeed, they can try again, with no harm done. So long as the process is adequately
documented, improvisations, experiments, and thinking on the feet is to be encouraged.

Testing, validation and verification
This is a full account of the strategies adopted in the testing of the finished database and
the results of that testing. Particular attention should be paid to verification (does this
system meet the requirements of the user?) and validation (is the technical implementation
of the system correct?).

51



Gervuse Philips Dissertations and databases: the historian as software engineer

Operation and maintenance manual
This documentation should instruct the user, in how to operate the system and, if
necessary, make alterations and updates. Again, since the system is to be used by
historians rather than computer scientists, it should be non-technical, as far as possible.

Report
The final document should be a full evaluative report on the implementation of the
database. The student might like to take the following areas into consideration:

• How successful was the implementation?

• Are there alternative design/implementation strategies which might produce a better
system for the historian?

• How useful are such databases to the historian?

• What are the methodological problems associated with implementing databases of
historical data?

References
Fogel R.W. and Engerman S.L. (1974), Time On The Cross: The Economics of Negro
Slavery, London, Wildwood House.

Cab. 24/26 G.T.2052, 'Notes on the morale of British Troops in France as disclosed by
the censorship, 13th September, 1917'.

Cab. 24/36 G.T.3044, 'The British armies in France as gathered from censorship, 12th
December, 1917'.

Phillips, G. (1992), A Quantitative Analysis Package for Historians, M.Sc. Thesis,
University College of Wales, Aberystwyth.

Sommerville, I. (1989), Software Engineering, London, Addison-Wesley.

Tosh, J. (1984), The Pursuit of History, London, Longman.

52


